leetcode-873-Length of Longest Fibonacci Subsequence
问题
A sequence X_1, X_2, ..., X_n
is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2}
for alli + 2 <= n
Given a strictly increasing array A
of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A
. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A
by deleting any number of elements (including none) from A
, without changing the order of the remaining elements. For example, [3, 5, 8]
is a subsequence of [3, 4, 5, 6, 7, 8]
.)
Example 1:
1 | Input: [1,2,3,4,5,6,7,8] |
Example 2:
1 | Input: [1,3,7,11,12,14,18] |
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
分析
思路1: 每两个数字就可以确定一条 Fibonacci 数列,我们可以先确定,每一个Fibonacci 数列的首两个数字,然后依次判断,这个数列中的数字是否在数组A中,查找每个数字是否可在可以使用hash表。时间复杂度$O(n^2 logM)$, 其中 $ M = max(A[i])$,假设 Fibonacci 数列中最大的数可能是M,则由于其数列的增长是指数形式的,所以最多查找 $logM$ 次。
思路2: 使用DP算法,$dp[a][b]$ 表示以 $a, b$ 结尾的 Fibonacci 数列的最大长度。则有 $dp[a][b] = dp[b-a][a] + 1$, 若 $dp[b-a][a]$ 不存在则为 2。在本题中我们可以使用下标来代替具体的数值。则有 $ dp[i][j] $ 表示以 $A[i], A[j]$ 结尾的 Fibonacci 数组的最大长度,则 $dp[i][j] = dp[k][i] + 1$,其中 $ A[k] = A[j] - A[i] $ ,且有 $ k < i$,因此,我们可以使用一个 $ unordered_map
代码1
1 | class Solution { |
代码2
1 | class Solution { |
Author: Hatton.Liu
Link: http://hattonl.github.io/2020/03/26/leetcode-873/
License: 知识共享署名-非商业性使用 4.0 国际许可协议