Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
Example 1:
1 2 3 4 5 6 7
Input: grid = [[1, 0, 0, 1, 0], [0, 0, 1, 0, 1], [0, 0, 0, 1, 0], [1, 0, 1, 0, 1]] Output: 1 Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].
Example 2:
1 2 3 4 5 6
Input: grid = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] Output: 9 Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.
Example 3:
1 2 3 4
Input: grid = [[1, 1, 1, 1]] Output: 0 Explanation: Rectangles must have four distinct corners.
Note:
The number of rows and columns of grid will each be in the range [1, 200].
Each grid[i][j] will be either 0 or 1.
The number of 1s in the grid will be at most 6000.
classSolution { public: intcountCornerRectangles(vector<vector<int>>& grid){ // unordered_map<int, int> mp; int mp[201][201] = {}; int ans = 0; int m = grid.size(); int n = m==0? 0: grid[0].size(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) if (grid[i][j] == 1) { for (int k = j+1; k < n; ++k) if (grid[i][k] == 1) { ans += mp[j][k]; mp[j][k]++; } } } return ans; } };
分析-方法2
先确定“上底”和“下底”,然后再这个“上底”和“下底”确定的情况下,能够画多少条“高”。
代码2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
classSolution { public: intcountCornerRectangles(vector<vector<int>>& grid){ int ans = 0; int m = grid.size(); int n = m==0? 0: grid[0].size(); for (int i = 0; i < m; ++i) { for (int j = i+1; j < m; ++j) { int counter = 0; for (int k = 0; k < n; ++k) { if (grid[i][k] == 1 && grid[j][k] == 1) counter++; } ans += counter*(counter-1)/2; } } return ans; } };